Variational characterizations of the sign-real and the sign-complex spectral radius

نویسندگان

  • Siegfried M. Rump
  • SIEGFRIED M. RUMP
چکیده

The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for nonnegative matrices) to general real and to general complex matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many one-to-one correspondences to classical Perron-Frobenius theory. In this paper the corresponding inf-max characterization as well as variational characterizations of the generalized (real and complex) spectral radius are presented. Again those are almost identical to the corresponding results in classical Perron-Frobenius theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

Ela Variational Characterizations of the Sign-real and the Sign-complex Spectral Radius∗

The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for nonnegative matrices) to general real and to general complex matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many one-to-one cor...

متن کامل

Perron-frobenius Theory for Complex Matrices

The purpose of this paper is to present a unified Perron-Frobenius Theory for nonnegative, for real not necessarily nonnegative and for general complex matrices. The sign-real spectral radius was introduced for general real matrices. This quantity was shown to share certain properties with the Perron root of nonnegative matrices. In this paper we introduce the sign-complex spectral radius. Agai...

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005